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Using the effect of the nonstationary frequency shift of acoustic waves in a me- 
dium with spatially and temporally varying properties, a theoretical estimate is 
made of the deviation from the superposition principle for an acoustic wave pro- 
pagating in the field of another continuous plane wave. 

According to the superposition principle of waves [i], in a linear medium each free wave 
propagates independently of all remaining waves, and the sound field at each point is simply 
the sum of fields of the component free waves. For scalar characteristics of the wave (e.g., 
for pressure, temperature) the summation is algebraic, and for vector properties (velocity, 
particle acceleration) it is vector summation. 

The ~uperposition is approximate: it is valid to the extent that linearization of the 
equations of hydrodynamics is satisfied for sound waves. 

The error due to linearization is small in the same sense that the terms neglected in 
the equations are small in comparison with the terms retained. This does not imply, however, 
that the error remains small in the solution of the equation at all times of the wave motion. 
On the contrary, the error due to linearization accumulates with the wave propagation: the 
further the wave propagates, the more its profile is deformed. There exists here a definite 
analogy with wave damping. Forces of internal friction in a sound wave are negligbly small 
in comparison with elastic forces. If they are not taken into account, however, damping does 
not occur. 

It must be noted that although in theoretical acoustics the superposition principle is 
correctly treated, most experimenters and p ractioners, associated with metrological uses of 
acoustics, particularly ultrasound, perceive this principle as absolute truth. A measurement 
of the deviation from the superposition principle can provide useful information on its 
properties. In other cases the deviation from the superposition principle can serve as an 
additional source of error in acoustic measurements. If some probing acoustic signal pro- 
pagates in a medium perturbed by extraneous acoustic sources, during its propagation it will 
accumulate information on the parameters of the extraneous sources, which can also be used in 
practice. 

Using the theory of nonstationary Doppler effect developed in [2-4], the relations ob- 
tained make it possible to estimate the deviations from the superposition principle. The me- 
dium, disturbed by the external acoustic field, can be treated as a medium whose properties 
vary in space and time, and, as shown in the papers mentioned, the propagation of acoustic 
waves in it is accompanied by a change of their frequency. There are two reasons leading to 
a frequency shift in this case. The first reason is a change of pressure in the medium due 
to the external acoustic perturbations. In the case of a liquid, for example, the velocity 
of sound is determined by the equation 

v = U1/p~.  (1) 
For small perturbations we put 

P = Po (1 + k~Ap), ~ = ~o (1 + k2Ap), (2 )  

where ~o and Do are the density and compressibility of the unperturbed medium, and Ap is the 
excess (sound) pressure due to the action of the external source of acoustic field. Substi- 
tuting relation (2) into (i), we obtain 

v : :  Vo/V 1 + (k~+k2) Ap ~ klk~Ap z, ( 3 )  
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Fig. i. Relative position of acoustic waves. 

whence it is seen that in real media the velocity of sound always depends on pressure, even 

when the condition kl = --k2 is satisfied, wherevo = I/Po~o is the velocity of sound in the 
medium unperturbed by the external acoustic field. The second reason leading to violation 
of the superposition principle consists of the fact that the action of the external acoustic 
field generates vibrational motion of the medium particles, and if probing elastic waves pass 
through this medium, the frequency of the latter changes due to the convective Doppler effect 
[4]. Thus, if elastic waves pass through a medium perturbed by an external source of an 
acoustic field, at the exit from the medium the waves mentioned are frequency or phase modu- 
lated by the external sound field. 

We estimate the frequency--phase shift generated by an external acoustic field in elastic 
waves. In this case we consider separately the effect of sound pressure and the effect of ac- 
celerated motion of the medium, with the purpose of simplifying the problem. 

Let continuous planar longitudinal waves propagate in the direction of the x axis. 
For definiteness we assume that their source is located at the point x = 0, and that the re- 
ceiver is at x = L (see Fig. i); the frequency of the emitted waves is constant and equals fo. 
At the same time there exists and external acoustic field in the medium: the continuous 
plane waves with frequency F propagate in some direction, forming an angle ~ with the x axis. 
For clarity we assume that F<<~o. The propagation velocity of the probing wave (of frequency 
~o) at the moment of its emission at point x = 0 will depend on the amplitude and phase of the 
external acoustic field at this point, which determine the sound pressure in the medium, the 
temperature variation, etc. In the case of water, e.g., for Ap> 0 the propagation velocity 
of the probing wave is larger, and for Ap< 0 smaller than its propagation velocity in the un- 
perturbed medium. This leads to the consequence that the propagation time of the probing 
wave from the emitter to the receiver (the delay time Td) will depend on the initial condi- 
ditions, the amplitude and phase of the external field at point x = 0 at the moment of emis- 
sion of the probing wave. Since the initial conditions change periodically, the delay time 
is also a periodic function of time. This leads to a periodic frequency shift of the applied 
probing waves: at the receiver there will be a frequency-modulated (or phase-modulated) sig- 

nal, while the modulation frequency equals F. 

As seen from Fig. i, the following relation is valid 

~' = ~cos~, (4) 

and for the propagation velocity of the probing waves in their direction of propagation one 

can write: 

v(x, "Q=vo-[-Avosin  o-~ _ _ ; _ 7 .  x_~_ q~ = t , o + A v o s i n f 2  z _  x c o s ~  ~ t , ( 5 )  
, U0 

where Q = 2nF; t = ~/~. 

The essence of the method suggested below for determining the frequency shift and find- 
ing the law of wave motion in the medium with account of the space-time dependence of its 
propagation velocity and subsequently finding the relation between the frequency of the 
emitted wave with the frequency that this wave has upon approaching the receiver. It is 
clear from physical considerations that the largest frequency shift will be observed at ~ = 0, 
when probing an external acoustic waves propagate in the same direction. In this case any 
phase surface of the probing wave has plenty of time of being found either in the region of 
enhanced or reduced pressure, and, correspondingly, will gradually either lead the external 
wave, or lag behind it. For a ~= 0 the probing wave will subsequently be in the region of en- 
hanced and depressed pressure, and the frequency shift accumulated during its propagation in 
the region of enhanced pressure will, to some extent, compensate the inverse sign of fre- 
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quency shift accumulated in the region of reduced pressure. Therefore, we confine ourselves 
to the case of ~ = O. 

To determine the law of motion of a wave emitted in the direction of the x axis at some 
moment of time, it is necessary to solve the differential equation 

dx 
-- Vo q- AVo sin O ( T - - x / v  o J -  t) (6) 

d1: 

with corresponding initial conditions. Without loss of generality, the initial condition can 
be taken in the form 

.v!~_o = O. (7) 

The solution of Eq. (6) satisfying condition (7) is 

[ .(-'2( x ) 9-Avo~ In t g ~ -  m ~ t '  
o Vo ' - ( 8 )  

i t g  ~ ' -  t vo 
2 

The latter expression is the law of motion of the wave emitted at point x = 0 at moment of 

time r = 0. If the running coordinate x is replaced by the coordinate x = L, at which the 
receiver is placed, the time found from this expression is the delay time of the wave path 
from the source to the receiver, i.e., the delay time m d. Thus, 

In 

f) L q-t) tg-  -- 
U O 

tg Q t 
2 

QAv 0 
J- ~d=  O. (9) 

V0 

For nonvarying L, Avo, vo, ~ the quantity m d is a function of t, where t can be considered as 
a running time relative to the radiator. Indeed, the phase ~ of the traveling external waves 
at the position of the emitter varies continuously and linearly with time, ~ = ~t, where ~ = 

const. Therefore, in what follows we replace t by m for the running time. Further, it is 

seen from Eq. (6) that for t = ~n/~; n = 0, i, 2,..., which corresponds to the initial phase 
q: = ~n, its solution is the dependence x = vom, i.e., 

T ~ = L / v o .  (i0) 

This implies that the delay time for other values of ~ cannot differ from m~ by more than ~/~. 

Therefore, for convenience of further analysis the quantity m d is replaced by the quantity 
equal to it 

L 
md ----- -- -7 A~d. (ii) 

U0 

Substituting (ii) into Eq. (9) and replacing t by m, we obtain a transcendental equation for 
determining the quantity AT d as a function of time: 

0 

2 
In 9. + + A~ d -- O. (12) 

t g - -  �9 Vo . Vo 

2 

To determine the frequency shift we write the obvious relation for the phase difference 
of the received Sr and emitted q~e oscillations: 

% - -  r = Aq~ = - -  2~foTd.  (13) 

S ince  the  q u a n t i t y  cd v a r i e s  i n  t ime ,  so does  t h e  phase  d i f f e r e n c e  m e n t i o n e d ,  w i t h  r e -  
s u l t i n g  equivalent frequency shift 

Af-- 2~1 d(A~)dm -- f0 dmdd~- -- f0 d (Amd)dT (14) 

The derivative d(Amd)/d~ can be found as a derivative of an implicit function, which is the 
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left-hand side of Eqo (12). 
ing equation for the frequency shift: 

A[(J  = - - f 0  sin Q (ard - -  *] - -  sin g r  (1.5) 
[ l q -  Av~ sin'O-(A~d+~)] s i n - O - r v 0  

Since the condition Avo/vo << 1 is practically always satisfied, the following expression 
can be used quite accurately 

Af(T)~f0 If-- sing__(AT d-uT) ] , (16) 
sin ~'~ j 

Taking into account that for~+~nATd§ , it is easily verified that the function Af(m) , 
described by expression (16), achieves a maximum at ~ = 2~n, which corresponds to the values 
T = 2~n/g, and minima at <p = (2n + I)~, which corresponds to r = (2n + i)~/~. Physically 
this is explained by the fact that at a given moment of time there exists, respectively, at 
the position of the emitter a maximum velocity of increasing or decreasing sound pressure 
from the traveling external wave, which also generates the largest frequency shift. 

Consider, as an example, the case ~§ (m§ It follows from the condition !imATd-+0 

that for m§ 0 we can put 

Differentiating and substituting into (14), we obtain the follow- 

where ~ is some number. 
we obtain 

AT d = a% (17) 

Substituting the latter into Eq. (12) and passing to the limit ~§ 

o r  

In/a -- 11 -- _O-AvoL 
v~ 

~AvoL ] 
]a -5 13 = exp v~ " 

The right-hand side of the last equality is positive and smaller than unity; hence, it can be 
concluded that a< 0, and lal < i. In this case the absolute value sign can be neglected, and, 
thus, 

r ~AvoL ] 1. 

Similarly we find now the limiting expression of (16) with account of (17) and (18): 

(18) 

]im Af (~) = - -  floa = fo ( i  - -  exp [ 
~ 0  

Under realistic conditions the condition .O.AvoL/vo<<l 
can be assumed that quite accurately 

QAv~ ] ) v ~  " (19) 

is usually satisfied; therefore, it 

Af ~ fo ~AvoL 

For the initial phase ~ = (2n + 1)7 we obtain similarly 

(2o) 

A [ = _ [ o  (expl  "~176 (21) 

or approximately 

-qAvoL (22) 

It is seen from relations (19), (21) or (20), (22) that the frequency shift increases 
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with the distance from the source, and the error due to the deviation from the superposition 
principle indeed accumulates as the wave propagates. These relations also make it possible 
to carry out a numerical estimate of the maximum frequency shift generated under the condi- 
tions of the problem considered. The estimate is performed for liquid (water) and gas (air) 
media. To determine Avo we take into account that Av0<<v0, Ap0<<p0, and one can start from 
the relation 

( @v ) {0V I ~To. (23) 
~v0= ~ Apo !- I OT ]; 

T 

A c c o r d i n g  t o  t h e  d a t a  o f  [ 5 ] ,  f o r  w a t e r  a t  n o r m a l  p r e s s u r e  3 v / 3 p  = 1 . 8 . 1 0  - 6  m / s e c .  P a ;  
f o r  ATo i n  [6]  t h e  f o l l o w i n g  r e l a t i o n  i s  s u g g e s t e d  

T O cp PoCp 

T a k i n g  t h i s  i n t o  a c c o u n t ,  i n s t e a d  o f  (23)  one  can  w r i t e  

Avo=: Or@__ ~ Apo. (24) 
T Poc;  ,. ; 

We use the following values: f o  = 106 Hz, ~ = 27-105 rad/sec, L = i0 m, vo = 1500 m/sec, 
To = 300~ Apo = 1 Pa. Substituting in Eq. (24) the values for water a T = 2.10 -4 K -:, Po = 
103 kg/m 3, Cp = 4.2.103 J/kg.~ dv/dT = 3 m/sec, we obtain Avo = 1.84.10 -6 m/sec. It seems 

in this case that the velocity increase due to hydrostatic pressure is 1.8.10 -~ mTsec, and 
due to adiabatic heating of water in the sound wave it is 4.2.10 -e m/sec, i.e., a negligibly 
small quantity. Substituting these data into Eq. (22), we find the value of the maximum fre- 
quency shift Af ~ 5 Hz. For L = 50 m the frequency shift is 25 Hz. The resolving capability 
of available receivers of frequency-modulated signals makes it possible to measure these fre- 
quency shifts. 

For air, taking into account the large attenuation coefficient of ultrasound at high 
frequencies, we adopt other conditions: f o  = 105 Hz, ~ = 27.10" rad/sec, L = i m. According 
to experimental data for air, dv/dp = 1.3.10 -~ m/sec. Pa [7]; one easily calculates d T= 0.6 
m/sec.~ The temperature change in the external wave can be determined from the equation [8] 

A T o ~  ? - - 1  AP~ To, (25)  
Y Po 

~<here Y = 1 . 4 ;  f o r  To = 300~ Po = 105 P a ,  Apo = 1 Pa we o b t a i n  ATo = 8 . 6 . 1 0  - 4  K. S u b s t i t u t -  
i n g  t h e s e  v a l u e s  i n t o  Eq.  ( 2 3 ) ,  we o b t a i n  f o r  a i r  Avo = 5 . 2 . 1 0  - "  m / s e e ;  f r o m  Eq. (20)  t h e  f r e -  
q u e n c y  shift equals (for vo = 340 m/sec) Af ~ 27 Hz. For L = 5 m Af = 135 Hz. 

It must be pointed out that for gas media the main Contribution to the velocity incre- 
ment Avo is due to the temperature increment in the sound wave. Under the conditions adopted 
for air the first term in expression (23) is approximately 400 times smaller than the second. 

We estimate now the frequency shift generated by the vibrational motion of medium par- 
ticles in an external acoustic field. 

We use the relations for the longitudinal and transverse convective Doppler effects, ob- 
tained in [4]. Since the frequency shift is determined in this case by the medium accelera- 
tion, which is a periodic function of time, the frequency shift is also a periodic function 
of time, and its amplitude is determined by the amplitude of medium acceleration. The medium 
velocity and acceleration vectors can always be decomposed into two components, a parallel and 
perpendicular acoustic ray, respectively; therefore it is sufficient to estimate the longi- 
tudinal and transverse effects separately. 

As to propagation in the medium of particles that perform oscillatory motion (it is 
assumed that ~ = const, see Fig. i), the probing waves will pass through regions of the me- 
dium with different magnitude and sign of the medium velocity and acceleration. Therefore, 
the frequency shift does not always accumulate in time, as was in the case considered above: 
the maximum frequency shift will occur after a time, during which the sign of the acceleration 
for the longitudinal component at the receiver is not changed. This time equals half the 
period of the external waves. For the transverse effect this time equals one-fourth period, 
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since the direction of the transverse motion of the medium (to one side or the opposite one) 
does not affect the sign of the frequency shift. In other words, to estimate the magnitude 
of the effect the length L must be chosen as L = %/2 = wvo/~ for the longitudinal component 
and L = %/4 = wvo/2~ for the transverse component of the frequency shift. 

As is well known (see, e.g., [9]), the medium velocity and acceleration in a sound wave 
are related with the sound pressure by the relations 

u = u0cos~T Ap0 cosQ't', (26) 
P0v0 

du _ Ap0 P_sinQT (27) 
d~ 90v0 

Taking into account what was mentioned above, relations (26), (27), and using the equa- 
tions of [4] for the longitudinal and transverse effects, as well as the condition uo <<vo, 
we obtain (the minus sign is omitted) 

AZH = ]~o a?_qo_ sin Q% ( 2 8 )  
p0v5 

a ( L\P~ ' /2sin2QT. (29)  AfZ 

It is seen from (28), (29) that oscillatory motion of the medium generates a frequency-- 
phase modulation of the probing waves, while the frequency shift is a periodic function with 
the frequency of the external wave for the longitudinal component of the oscillatory motion 
of the medium, and twice the frequency for the transverse component. Using for water the 
data given above, we obtain the following values for the maximum frequency shifts: 

(AfH)ma x ~ 1,4.10 -a Hz; (Afl.)ma x ~ 1,5.10-*a Hz.. 

For air the convective effect is significantly larger. For the condition chosen for air 
we obtain 

(Aflr)ma x ~ 2.2 Hz; (AlL)max ~ 4 .10 -s Hz. 

T h u s ,  t h e  e s t i m a t e s  made p r o v i d e  an  i d e a  on t h e  n a t u r e  and  e x t e n t  o f  d e v i a t i o n  f r o m  t h e  
s u p e r p o s i t i o n  p r i n c i p l e  f o r  v a r i o u s  m e d i a ,  and  a l s o  show t h e  p o s s i b i l i t y  o f  e x p e r i m e n t a l  d e -  
t e r m i n a t i o n  o f  t h e s e  d e v i a t i o n s .  

NOTATION 

v, velocity of acoustic waves in the medium; vo, same quantity in a medium unperturbed 
by an external acoustic field; p and B, density and compressibility of the medium; ~o, prob- 
ing wave frequency; F and X, frequency and wavelength of the external waves; x, coordinate; 
T, time; ~, initial phase; L, acoustic base; Td, delay time; p, pressure; Apo and ATo, ampli- 
tudes of pressure and temperature increments in the acoustic wave; aT, bulk expansion coeffi- 
cient; Cp, specific heat at constant pressure; and T, temperature. 
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ELECTRICAL AND THER>iAL STRUCTURE OF THE ARGON ARC 

OF A TWO-JET PLASMATRON 

S. P. Polyakov and V. I. Pechenkin UDC 537.523 

The thermal structure and the distribution of the axial electric field strength 
of the arc of a two-jet plasmatron were investigated experimentally. 

Characteristic features of two-jet plasmatrons (plasma generators) are the high thermal 
efficiency, up to 90% [i], and the presence of an exterior stabilized electric arc. Because 
of this plasmatrons of such type are of great promise for application in chemical technology, 
heat engineering, deposition techniques, spectroscopy, etc. [2-4]. The literature, however, 
contains no information about the results of investigations of two-jet plasmatrons with the 
heads opposite one another. 

The aim of the present work was to determine the electrical and thermal structure of the 
arc burning in the open atmosphere between the opposite heads of a two-jet plasmatron and 
stabilized by argon streams at atmospheric pressure. 

During the experiment the plasmatron, which was equipped with a rod-type thermionic 
tungsten cathode and an everlasting end-type copper anode [5], operated in the following con- 
ditions: arc current I = 100-200 A, voltage U = 100-300 V, flow rate of plasma-forming gas 
through each of the heads G a = G c = (0.25-0.5).10 -3 kg/sec. The diameters of the head nozzles 
were (5-7)'i0 -s m, and the distance between the nozzle exits was varied in the range L = 
(5-25)'10 -2 m. These ranges of controlling parameters were optimal, and the alteration of 
even one of them in either direction led to destruction of the heads or to arrest of the arc. 

The electric field strength along the arc axis was investigated with the aid of movable 
tungsten probes, which moved perpendicular to the arc axis at a speed W = 1 m/sec. The re- 
sults of the measurements are presented in Fig. 1 (curves I), which shows that the electric 
field was strongest near the nozzle exits and decreased with increasing distance from them: 
At a distance of about 4.10 -2 m the field strength was E = (6-7).102 V/m, which is a typical 
value for freely burning unstabilized argon arcs [6]. We can divide the arc lengthwise into 
five regions. The initial regions of the cathode and anode jets (in Fig. 1 from the nozzle 
exits to sections A and D, respectively) are characterized by an electTic field strength that 
depends on the nozzle diameters and the argon flow rate. In these regions the arc is com- 
pressed and is stabilized by the rigid jets of plasma-forming gas issuing from the nozzles. 

In the regions with fully developed flow (in Fig. 1 from section A to section B and from 
C to D) the field strength along the axis is constant and is practically independent of the 
arc burning conditions, which in view of the measured value E = (6-7).102 V/m indicates lami- 
nar flow of the jets [7, 8]. In these regions the arc is spatially stable. The arc bends 
readily under the action of a transverse stream of gas, but when the stream is removed the 
arc resumes its former position. The length of these regions depends on the flow rate of the 
plasma-forming gas, the distance between the nozzle exits, and the lengths of the regions in 
which the jet flow is laminar. 

The dimensions of the region where the anode and cathode plasma jets meet (between sec- 
tions B and C in Fig. I) depend on the distance L and the argon flow rate. Beginning at L = 
15o10 -2 m or more, the gas discharge in this region is unstable, and the scale of the insta- 
bility increases with increase in the size of this region. The appearance and development 
of instability cause an increasp in the voltage fluctuations on the arc, which can reach 40% 
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